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ABSTRACT

Enantiomerically pure (l)-tryptophanol (5) was synthesized from 4(R)-iodomethyl-2-oxazolidinone (2) and indolylmagnesium bromide in three
steps (52% overall yield). Using this procedure, we also prepared various tryptophanols with substituent(s) on the indole ring. Furthermore,
optically active 4(R)-iodomethyl-2-oxazolidinone was readily prepared from an enantiomerically pure aziridine-2(S)-methanol in high yield.

(l)-Tryptophan has received much attention because it
activates thetrp RNA-binding attention protein (TRAP)1 of
Bacillius subtilis2 and also is an essential amino acid.
Furthermore, the 5-methyltryptophan inhibits the growth of
Bacterium coli3 and enantiomerically pure tryptophan can
be used as a chiral building block in the asymmetric synthesis
of biologically active compounds.4 These results have
prompted many organic chemists to develop efficient enan-
tioselective synthetic methods.5 The synthesis of enantio-

merically pure tryptophan has been accomplished by reso-
lution,6 Shöllkopf chiral auxiliary,7 iminoglycinate auxiliary,8

and asymmetric reduction.9 The need for various indole
substitutedR-amino acids prompted us to investigate a more
general and efficient preparative method for enantiomerically
pure tryptophanols. We report herein an efficient synthesis
of tryptophanol and its analogues by coupling enantiomeri-
cally pure 4(R)-iodomethyl-2-oxazolidinone (2), which was
prepared from a chiral aziridine in one step, with indolyl-
magnesium bromide.10
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We recently reported the preparation of chiral aziridine-
2-methanol (1) from readily available starting materials in
two steps.11 The enantiopure 4(R)-iodomethyl-2-oxazolidi-
none (2) and its analogues are useful chiral building blocks
for asymmetric organic synthesis.12 The iodomethyl group
in the oxazolidinone can be converted to various functional
groups such as alkyl,13 alkene,14 methoxy,15 acetoxy,16

lactam,17 and silyl18 groups. 4(R)-Iodomethyl-2-oxazolidinone
(2) was prepared from the aziridine-2(S)-methanol (1)
through regiospecific C(3)-N bond cleavage by iodotrimeth-
ylsilane and then intramolecular cyclization with carbonyl-
diimidazole (Scheme 1). Ring opening and intramolecular

cyclization proceed in one pot to provide a high yield of the
oxazolidinone (2). Although 4(S)- and 4(R)-iodomethyl-2-
oxazolidinone systems can be prepared from (l)- and (d)-
serines, those conversions require a multistep process.
However, using aziridine-2(S)-methanol (1) we can prepare
the target oxazolidinone system in one step with high
chemical yield.

Indolylmagnesium bromide is known to react with alky-
lating reagents to give C(3)-alkylated indoles.19 We found
that the reaction of 2 equiv of indolylmagnesium bromide
with 4(R)-iodomethyl-2-oxazolidinone (2) in refluxing tolu-
ene afforded protected tryptophanol (3) in a reproducible
yield of 62% based on2. When 1 equiv of Grignard reagent
was used, the protected tryptophanol (3) was formed in 17%
yield. Unfortunately, protected tryptophanol (3) was not
detected when the reaction was heated to reflux in THF or
DMF. Some clear trends are evident from the results
described in Table 1. The result indicates that the alkylating
process is more effective in refluxing toluene (62%) than
benzene (48%), chlorobenzene (36%), and xylene (37%)
(entries b-e).

The phenylethyl protecting group on the nitrogen was
removed under Birch conditions20 in the presence of lithium

and liquid ammonia to provide the 4(S)-indolylmethyl-2-
oxazolidinone (4)21 almost quantitatively. The 4(S)-indolyl-
methyl-2-oxazolidinone (4) was hydrolyzed22 in the presence
of LiOH to give the corresponding (l)-tryptophanol (5) in
89% yield (Scheme 2). We compared all the analysis data

including 1H and 13C NMR, optical rotation, and high-
resolution mass data of the obtained (l)-tryptophanol (5) with
those of the authentic sample to find good agreement between
two samples. When there is a halogen substituent in the
indole ring, Birch reduction is not applicable. Since the
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Scheme 1

Table 1. Grignard Reaction of the Corresponding Substituted
Indole

entry X solvent time (h) yield (%)a

a H THF 8
b H benzene 12 48
c H toluene 4 62
d H chlorobenzene 2 36
e H xylene 2 37
f 2-methyl toluene 2 58
g 5-methyl toluene 4 67
h 6-methyl toluene 4 59
i 7-methyl toluene 2 51
j 5-methoxy toluene 4 59
k 5-fluoro toluene 6 38
l 5-chloro toluene 6 40

m 5-bromo toluene 6 41
n 2,5-dimethyl toluene 4 64
o 5,6-dimethoxy toluene 4 36
p 2-methyl-5-methoxy toluene 3 70

a Isolated yield.

Scheme 2
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phenylethyl nitrogen protecting group can be removed by
anisole and methansulfonic acid,23 we tried to remove the
benzyl group from halogen-substituted compounds3l and
3m. However, we observed the decomposition of the indole
ring under the reaction condition. Therefore, with halogen-
substituted indole we removed the benzyl group from2 with
anisole and methansulfonic acid before the coupling reaction.
The coupling between the Grignard reagent from 5-bromoin-
dole and 4(R)-iodomethyloxazolidin-2-one in refluxing tolu-
ene provided 33% of the product, and we are currently
investigating a better coupling condition for halogen-
substituted indoles.24

Using this procedure, we also prepared various tryptopha-
nol analogues with substituted indoles under the same
reaction condition in refluxing toluene, and the results are
summarized in Table 1. The yield of the protected tryp-
tophanols seems to decrease with indoles containing elec-
tronegative substituent (entries k-m). The highest yield in
the coupling reaction was obtained with 2-methyl-5-meth-
oxyindole to give a 70% yield (entry p).

To summarize the above results, we developed an efficient
method for the preparation of enantiomerically pure (l)-
tryptophanol and its analogues using iodomethyloxazolidi-
none and indolylmagnesium bromide. Using the same

methodology the (d)-tryptophanol analogues are also avail-
able starting from the aziridine-2(R)-methanol.
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D +32.4
(c 1.0, CHCl3); 1H NMR (CDCl3, 200 MHz)δ 6.63 (s, 1H), 4.51 (dt,J )
3.3, 8.3 Hz, 1H), 4.17-4.04 (m, 2H), 3.30-3.19 (m, 2H.13C NMR (CDCl3,
50 MHz)δ 159.4, 70.3, 52.8, 8.7. HRMS(EI) calcd for C4H6NO2I: 226.9443,
found 226.9448.Preparation of 4(S)-(5-bromo-1H-indol-3-ylmethyl)-
oxazolidin-2-one.To a solution of 4(R)-(iodomethyl)oxazolidin-2-one (0.30
mmol) and indole (0.61 mmol) in 1.5 mL of toluene was added EtMgBr
(1.0 M solution in THF, 0.6 mmol). The reaction mixture was refluxed for
6 h and cooled to room temperature. The mixture was quenched with 0.5
mL of 1 N HCl. The aqueous layer was extracted with EtOAc (5 mL× 3),
and the combined organic extracts were washed with brine, dried over
MgSO4, filtered, and concentrated under reduced pressure. Purification by
silica gel flash chromatography (EtOAc/n-hexane) provided 33% of the
coupling product as crystals.Rf ) 0.2 (EtOAc/Hex) 3/1).1H NMR (CDCl3,
200 MHz) δ 8.27(s, 1H), 7.73 (d,J ) 11.4 Hz, 1H), 7.36-7.20 (m, 2H),
6.63 (d,J ) 8.4 Hz, 1H), 5.68 (s, 1H), 4.20 (m, 1H), 3.84 (m, 1H), 2.95-
2.86 (m, 2H).
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